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Only retain... what augments the number of connections.
DELEUZE AND GUATTARI1
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Abstract

Computational functionalism [5] fails to understand the embodied and situ-
ated nature of behaviour by taking steady state functions as theoretical
primitives, and by interpreting cognitive behaviour from a language-like,
observer dependant framework without a naturalized normativity. Evolu-
tionary functionalism [28, 27], on the other hand, by grounding functional
normativity on historical processes fails to give an account of normative func-
tionality based on the present causal mechanism producing behaviour. We
propose an alternative autonomous dynamical framework where functional-
ity is defined as contribution to self-maintenance [15, 10, 35] and normativ-
ity as satisfaction of closure criteria. We develop this framework by a set of
formal definitions in the framework of dynamical system theory and propose
the hypothesis of an homeostatic-plasticity [31, 40] based general purpose
value system as an internalized normative mechanism that selects between
internal state trajectories to produce adaptive functionality under different
environmental conditions. To test the hypothesis we develop a simulation
model where lower level specifications of a control arquitecture (an homeo-
static plastic DRNN) give rise (through a simulated evolutionary process)
to adaptive behaviour in a foraging task where food sources can be poison-
ous or profitable. Analysis of the evolved agent show that plastic changes
occur when the agent produces salient adaptive interactions, those plastic
changes determining the adaptive strategy. The embodied and interactive
adaptive functionality is dynamically analysed, illustrating the autonomous
dynamical framework.
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Chapter 1

Introduction

Beer’s adaptive behaviour program [3] recovered Ashby’s pioneering work
[1] under the new paradigm of computer simulations, CTRNNs (Continuous
Time Recurrent Neural Networks) and the use of Genetic Algorithms to pro-
duce complex adaptive systems. The main idea (already present in Ashby’s
work) was that adaptive behaviour, as the origin of intelligence, should be
understood dynamically as the homeostatic maintenance of essential vari-
ables under viability constraints through environmental interactions. After
a set of criticisms coming from different cognitive scientists and philosophers
Randall Beer1 decided to put aside his program of adaptive behaviour and
focus his research on “representation hungry problems” [13] giving rise to
the minimally cognitive behaviour program. The aim was is to demonstrate
that the embodied dynamical approach is able to produce behaviours that
could satisfy representationalists’ minimal requirements for cognitive beha-
viour [37, 4]. The new program, although maintaining the emphasis on the
embodied, situated and dynamical nature of behaviour does not even men-
tion the central role of the homeostatic maintenance of essential variables
under viability constraints.

Similarly almost all the work done in evolutionary robotics and evol-
utionary simulations [20, 19, 14, 31, 39, 34] is aimed to produce specific
cognitive/adaptive behavioural patterns with no reference to autonomy, self-
sufficiency and essential variables. The aim of this work is to recover the
notion of autonomy (as maintenance of essential variables under viability
constraints) as a central notion for adaptive behaviour with special signi-
ficance on the definition of adaptive function. Under this framework value
systems, by modulating the state trajectories of some variables of the control
architecture according to adaptively significant events, become key mechan-
isms in the production of adaptive behaviour. Inspired on some recent work
on plastic controllers [34, 18] and specially Di Paolo’s work [31], we hypothes-

1Personal communication, 15th August 2002 (WGW’02, International Workshop on
Biologically-Inspired Robotics: The legacy of W. Grey Walter.)
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ize that homeostatic plasticity could be a genuine candidate for a general
purpose value system. We believe that within an autonomous dynamical
framework a number of fundamental problems of computational and evol-
utionary functionalism could also be solved, specially those concerning the
notion of normative function.

Chapter 2 introduces the concept of autonomy, defines functionality in
terms of contribution to self maintenance and highlights the relevance of
value systems for adaptive behaviour. Chapter 3 provides an explicit form-
alized framework to characterize adaptive behaviour in dynamical system
theory. Chapter 4 explains the details of the simulation used to produce a
set of autonomous and situated agents. In chapter 5 we analyse two types of
evolved agents. Chapter 6 discusses some of the implications of the autonom-
ous dynamical framework proposed in chapter 2 with examples taken from
the experimental results. Finally chapter 7 briefly recapitulates the work
presented in the dissertation.

8



Chapter 2

Autonomy and Value

Systems

The term autonomy and autonomous has been largely used in cognitive sci-
ence and robotics [23] to describe an agent embodied and situated in the
’real world’, without external energy supply, etc. We consider that a deeper
sense of autonomy (as self-maintenance) allows for a richer characteriza-
tion of cognition and adaptive behaviour. By conceptualizing and modeling
autonomy within the dynamical approach to cognitive science [41] and ad-
aptive behaviour [3] a number of important goals could be achieved:

• To provide an normative criteria to interpret and evaluate adaptive
and cognitive functionality solving the frame of reference problem
(Clancey [11]) of computational functionalist approaches.

• To naturalize the notion of normative function (Millikan [28, 27]) on
the dynamical organization of processes giving rise to autonomous be-
haviour (as proposed by Bickhard, Christensen and Hooker [16, 9, 10]).

• To integrate mechanistic, embodied and interactive explanations without
recursion to prespecified functional/behavioural primitives.

The significance of this points will be discussed on chapter 6 with ex-
amples and conclusions driven from the experimental results.

We will proceed by defining basic autonomy (as the fundamental pro-
cess of self-construction and thermodynamic interaction) and analysing its
consequences for an autonomous perspective of behaviour. We will then
focus on value systems as a fundamental mechanism for adaptive behaviour
and finally we will provide a set of formalized definitions in dynamical sys-
tem notation (with special focus on dynamic normative function and value
systems).
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2.1 Autonomy: the hermeneutic and normative

axis

2.1.1 Basic Autonomy: the root for normative functionality

Living systems are primarily autonomous systems, i.e. their basic organiza-
tion is that of a self-sustaining, self-constructing entity over time and space.
An autonomous systems is a highly recursive network of processes that pro-
duces the components that constitute the network itself. When this network
is protected by a boundary (membrane) the network becomes a separated
self-constructing entity (an autopoietic unity Maturana and Varela [25, 26]).
But autonomous systems are far from equilibrium and thermodynamically
open systems which adaptively transform their boundary conditions to as-
sure the flow of matter and energy required for their self-maintenance [29],
unlike dissipative structures (which hold their organization only under a re-
stricted set of external conditions that the system cannot modify). The key
of basic autonomy, as developed by Ruiz-Mirazo and Moreno [35], is that
of generating internal and external constraints. It is the generation of this
constraints that defines the function of internal and interactive processes.
Functionality is, thus, picked up at the level of their contribution to self-
maintenance and not, as evolutionary functionalism proposes, at the level
of selective history. For, of course, contribution to self-maintenance is evol-
utionarily advantageous; but autonomy is to be seen not as a pure outcome
of evolutionary processes but as the condition of possibility of such process.
That’s why autonomy and autopoiesis are taken to be more fundamental
processes than evolutionary ones [44], because, although deeply interlinked,
for an organism to be selected it must first of all exist as a self-maintaining
organized network of processes, i.e. as an autonomous system.

We can, thus, root functionality in autonomy [15], so that the function of
a process or structure is determined by its contribution to self-maintenance
by means of its constructive nature or of its interactive satisfaction of clos-
ure criteria (controll of boundary conditions for self-maintenance). This way
functions becomes normative [9] by means of its integration in the whole dy-
namic organization of an autonomous (self-maintaining) system, and not by
means of the particular evolutionary history of an isolated trait or structure.
A naturalized account of normativity grounded in autonomy provides, at the
same time, a way out of an observer dependant semantic description of the
processes involved, since the failure to function conditions the very existence
of the system. The result is a redefinition of functionality in the grounds of
the biological conditions of possibility of the dynamical process (autonomous
system) it belongs to (à la Kantian naturalized transcendentalism).

A constructive and an interactive closure can be distinguished in the
functional organization of an autonomous system:

• The constructive: involving the self-constructing processes and,
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• The interactive: involving the thermodynamic flow between the autonom-
ous system and its environment and the controll of boundary condi-
tions.

This second closure condition will become the key for and autonomous char-
acterization of cognition and adaptive behaviour.

2.1.2 Autonomy, Adaptive Behaviour and Cognition

Because metabolic reactions are sometimes too slow to maintain an in-
ternal stability under rapidly changing environmental conditions a new sub-
system emerges in the history of biological organisms: the nervous sys-
tem. The nervous system connects sensory-motor surfaces to deal with
environmental changes rapidly and without involving change in the meta-
bolic/constructive processes (generally based on slow diffusion processes
[30]). The self-maintenance of the system does not exclusively require meta-
bolic processes but interactions with the environment in terms of modulation
of interaction to predict and react in complex environmental conditions to
keep satisfying its closure conditions. Thus the nervous system, metabolic-
ally decoupled but embedded in the organism has to evaluate the results of
its body control. Affections and internal sensors become, then, major fea-
tures to autonomously build a cognitive internal normativity [10]. A second
level of functionality (cognitive functionality) can, thus, be described where
nervous mechanisms anticipate the effect of environmental interactions for
the self-maintenance of the system without having to produce the interac-
tion itself (and subsequently compensate for the produced disequilibrium
of essential variables). This way what grounds semantics is not an absolute
epistemological stand which requires absolute observers attributing semantic
relations to states of a system but the intrinsic evaluative mechanisms of
a cognitive agent. This mechanisms (value systems) have been developed
around this self-regulating-sustaining fundamental function in given envir-
onmental niches (which are, at the same time, specified by the cognitive
capacities of the organism 1). Christensen and Hooker [10] have developed
a theory of self-directed agents as those able to anticipate interaction pro-
cesses and evaluate their performance, as opposed to reactive systems. This
capacity of interactive self-structuring is a good candidate for a genuine dy-
namical and naturalized account of cognition and intelligence which doesn’t
require the postulation of externally interpreted functional and representa-
tional states. Nevertheless further steps into an explicit and workable set of
analytic and synthetic tools is required to produce relevant advances in this
direction.

1If an organism develops the capacity to recognize or access to new sources of energy,
this capacity itself transforms its ecological niche. From the point of view of novelty and
interaction is the organism who shapes the the niche and not vice versa
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The strength of a dynamical autonomous perspective is given by the
shift from:

• viewing cognition as computations between ‘representational’ auto-
maton states, whose representational normativity is fixed by an het-
eronomously interpreted functional equivalence with states of affairs
in the world

to:

• and interactive dynamical process whose normativity is given by its
satisfaction of closure criteria and functionality is grounded on the
embodied and situated nature of behavioural dynamics.

2.2 Value Systems as Internal Normativity: regu-

latory mechanisms

“All the evaluations are thus conditional, each depending on the others.
Thus there is no criterion for ‘better’ that can be given absolutely, i.e. un-
conditionally. But a neuron must do something. How then do the activities
of the neurons become co-ordinated so that the behaviour of the whole be-
comes better, even though no absolute criterion exists to guide the individual
neuron?” W. ROSS ASHBY2

Autonomous agents must be able to modulate their responses in vary-
ing environments, evaluate their interactions and constraint the space of
possible responses to satisfy closure criteria. A number of approaches have
tried to address how to solve this essential feature of intelligence. We will
briefly introduce the reinforcement learning paradigm and the concept of
values systems to end up with the hypothesis that a homeostatic-plastic
neural network could be a good candidate for a general purpose value sys-
tem mechanism.

2.2.1 The Reinforcement Learning Paradigm

A traditional way of dealing with variable environments and a set of possible
responses is the reinforcement learning paradigm. Reinforcement learning
assumes that the learning task can be specified by a control policy specifying
the action (from a set of discrete predefined possible actions) to be taken
given the current discrete state of the agent and the environment and a
reward or reinforcement signal [21]. The policy takes the form f(x) = a,
where f is the control policy, x the current state and a the action to be taken.
In this context different reinforcement learning algorithms are implemented
to find the control policy f that maximizes reward from the taken actions.

2Ashby, W.R. (1952) Design for a Brain. The origin of adaptive behaviour. London,
Chapman and Hall, 1978. p.7 (1/8)
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Q-learning is a well known algorithm to find a good policy. The agent learns
a value function Q(x, a) as an expectation of reward so that the decision is
taken so as to maximize the expected reward. The learning process is a
process of acting and updating the value function.

From a dynamical perspective of adaptive behaviour the reinforcement
learning paradigm suffers from a series of problems derived from the set of
assumptions it is based on:

• The value of the reward is explicit.

• The environment is decomposed in discrete states.

• Possible actions are given as discrete units.

• Actions and states are given in discrete time units.

• The paradigm provides descriptive and predictive models but does not
capture biological mechanistic constraints.

2.2.2 Value systems and hebbian mechanisms

Pfeifer and Scheier [33] introduce the notion of value systems as a funda-
mental design principle for Autonomous Agents: “The value principle states
that the agent has to be equipped with a value system and with mechan-
isms for self-supervised, incremental learning employing principles of self-
organization” ([33], p.315).

The central role of value systems is to serve as an evaluative mechanism
and to guide learning to modulate adaptive behaviour in changing envir-
onments. Pfeifer and Scheier distinguish between implicit, innate reactions
that select valuable sensory-motor interactions, and explicit value systems,
those in charge of evaluating performance and modulating learning. Expli-
cit value systems are modelled controlling synaptic hebbian plasticity under
the general form:

∆wij = V · η · zi · zj (2.1)

where wij is the synaptic strength between nodes i and j, η is a learning
rate constant, zi and zj are an averaged memory of pre and post-synaptic
activity during the action and V is the value signal. Because the value
signals are generated after a particular action is performed a memory of the
last activations of neurones is required to reinforce or reduce the connections
responsible for that action. Activations of neurones are, thus, averaged over
the period of time the relevant action happend and stored in a memory.
Other and more complex hebbian learning mechanisms modulated by value
systems have been proposed and successfully implemented on robots for
categorization tasks and conditioned behaviour [46, 32, 22].
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The strength of value systems is that they autonomously guide learning
without reference to an external supervision. Plasticity (variation in the
synaptic space) produces a constrained variety of interactive patterns which
are selected by the value system providing a more complex repertoire of
adaptive strategies. As Verschure et al. put it: “According to the theory,
evolutionarily selected value systems provide constraints for the selection of
adaptive behaviours in somatic time. (. . . ) The main characteristic of value
systems can be summarized as the generation of a global signal that relates
to the occurrence of salient events and that can regulate firing patterns and
gate synaptic modification” ([46], p.248). In addition value systems can be
associated with existing brain structures. More concretely value signals are
taken to be implemented by diffuse ascending systems. Small populations of
neurones control the segregation of key neurotrasmitters such as dopamine,
noradrenaline, and serotonine affecting the synaptic strength of different
brain regions. This way, the value system paradigm integrates biologically
plausible lower level mechanisms (hebbian rules with value modulation) with
higher level situated behavioural patterns and unsupervised learning.

2.2.3 Homeostatic plasticity value system

One of the problems of the hebbian mechanisms explained above is that they
are constrained to prespecified value system modules and that the nervous
system must face two opposing requirements: change and need for stability
(to guaranty functionality). Different normalization mechanism to avoid un-
controlled growth of synaptic strength have been proposed but more recently
homeostatic plasticity has been proposed as a general regulatory mechan-
ism (Turrigiano [40]). Homeostatic plasticity provides, not only a mean for
“allowing Hebbian plasticity to modify synaptic strengths selectively”([40],
p.221) but the possibility of a general purpose value system. Homeostatic
plasticity can also explain how central neurons in the CNS balance the effect
of developmental changes. Turrigiano presents a whole set of mechanisms
involved in neural homeostasis where the general abstract mechanism works
by increasing synaptic strengths when the firing rate is low and scaling
down synaptic strengths when firing rates are high. Di Paolo has imple-
mented homeostatic plasticity in a simulation model to study adaptation to
inversion of visual field and other sensorimotor disruptions in a phototactic
agent [31]. Di Paolo’s model regulates synaptic plasticity of the incoming
weights to a node according to the node’s action potential. If the action po-
tential is maintained between homeostatic bounds, predefined as (-2,2) no
plastic change occur, but if action potential is too high (above 2) a hebbian
rule is applied to the incoming synaptic connections decreasing the synaptic
strength by a local plasticity facilitation parameter pj . The opposite effect
happens when the action potential is too low (below -2). The hebbian rule
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can expressed as:
∆wij = ηij · pj · zi · zj (2.2)

where wij is the synaptic strength from neurone i to neurone j, ηij is a
learning rate parameter, and zi and zj the pre and post-synaptic firing rates.
The degree of local facilitation changes according to the equation shown
in figure 2.1. Homeostatic plasticity can also be applied to other hebbian
variables (e.g. postsynaptic, presynaptic and covariance). In addition we
can use evolutionary techniques to select for homeostasis by adding a fitness
cost to non-homeostatic behaviour of neurones and let evolution find self-
organizing processes that lead to neural homeostasis based in similar rules
(see chapter 4 for more details).
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Figure 2.1: Facilitation of local plasticity as a function of action potential (from [31])

Our hypothesis is that activity dependant homeostatic plasticity can
be considered as a general purpose value system because the agent can
generalize weight modulation not only to pre-specified value signals (e.g.
dopaminergic neurones) but to any perturbation of the nervous system. But
how can homeostatic plasticity act as a value system?

Figure 2.2 illustrates the way in which homeostatic plasticity could lead
to value based reorganization of sensorimotor transformations. If neural
activity is between homeostatic bounds the weight variables of the system
will be stable under equation 2.2. The agent will, thus, be engaged in a
series of sensorimotor loops with its environment until a given interaction
produces some neurones to get out of homeostatic bounds. At this point
synaptic-plasticity is activated until the system founds a new stability point
in its weight space reorganizing neural activity and giving rise to a new
sensorimotor coupling with its environment.
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Figure 2.2:

The process can be understood thought the Ashbyan framework of para-
meters and stability in dynamical systems. Ashby resumes that “in a state-
determined system, a change of stability can be due to change of a parameter,
and change of value of a parameter causes a change in stability”([1], p.78
(6/7), italics in the original). Weights and neural activations can inter-
preted as two coupled machines, each controlling the stability conditions of
the other.

If internalized normativity is understood as the processes that selects/constraints
variability we can understand normativity as internalized stability in the
weight space i.e. plastic changes (variation in the weight space) is con-
strained by a set of rules and parameters and regulated by neural loss of
homeostasis. The ongoing process of variation and selection that gives rise
to complex adaptive systems in evolutionary timescale can now be expanded
to lifetime of an organism allowing for the possibility of functional novelty
regulated by evolutionarily selected neural homeostasis.

In contrast with reinforcement learning, no discrete environmental states,
nor discrete actions need to be presupposed, homeostatic plasticity based
value systems can also be implemented in continuous time. In contrast with
the value system literature in robotics the value system is not constrained
to act on prespecified situations and it doesn’t require averaged values of
past activity nor their allocation in a memory function. At the same time
homeostatic plasticity provides a synaptic stability mechanism, enables de-
velopmetal process stability and allows for an interpretation of internalized
normativity.

The viability of the of our hypothesis will be tested in chapter 5.
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Chapter 3

An Explicit Formalized

Framework for Autonomous

Systems

It is time now to make the autonomous dynamical framework explicit through
a series of formal definitions in the framework of dynamical system theory1.

Our interest on the dynamical approach [41] is that it allows for a genu-
ine integration and formalization of behavioural, mechanistic, interactive
and adaptive aspects of cognition in a state determined, quantitative way.
We don’t want to rely on an external interpretation of the states of an agent
to call it adaptive but, on the contrary, to find the dynamical self-intepreting
relations between agent and environment that makes the agent adaptive. In
turn, what a dynamical framework provides is a way to avoid taking rep-
resentations and adaptive functions (categorization, action, inferences etc.)
as modeling primitives while allowing for the emergence or self-organization
of dynamical processes whose behaviour can be categorized as adaptive or
cognitive.

3.1 Agent and Environment

Following Beer’s notation and definitions [3] an agent can be modeled as a
set of state variables xA = {x1

A
, x2
A
, . . . , xn

A
} ∈ R

n and a set of dynamical
laws A specifying the differential equations gouverning the system: ẋA =

1This definitions are not to be taken too rigorously, they are all extremely simplified
versions of what would require an extensive work far beyond the scopes of this disserta-
tion. Nontheless we believe that the formalization and definitions below provide a good
approximation for a ‘what is it like to characterize autonomy and adaptive behaviour in
dynamical terms’. The definitions given here are an extension of Beer’s program [3], in-
tegrating fundamental ideas from Ashby’s early work [1] and Varela’s notion of autonomy
[43]. We extended the framework with a definition of adaptive functionality and value
systems.
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A(xA; s(t)) where s(t) stands for the set of stimulus the agent receives from
its environment at time t. The system has solution φA(t;x

0
A
) for initial

conditions x0
A
. The environment could also be modelled as a dynamical

system by a set of variables xE = {x1
E
, x2
E
, . . . , xn

E
} with the corresponding

set of dynamical laws E specifying the evolution of the system over time ẋE =
E(xE ;m(t)) beingm(t) the motor actions the agent takes in the environment
with solution φE(t;x

0
E
). In terms of dynamical systems theory both A and E

are nonautonomous dynamical systems by receiving inputs from each other.
Both systems are thus, dynamically coupled by means of s(t) and m(t)
and s(t) = S(φE(t;x

0
E
)), where S is a function of environmental states to

sensory inputs. At the same time the motor output is given by m(t) =
M(φA(t;x

0
A
)), where M is a function from agent states to motor actions.

3.2 Behaviour

Behaviour happens at a metalevel description of agent-environment interac-
tions. That is because the agent’s dynamics alone cannot specify a beha-
viour. Phototaxis is a relation between agent position and a source of light,
swimming is a relation between waterly environment an agents mouvement.
Nor phototaxis can happen without light nor swimming without water. Anil
Seth [36] has pointed out the category mistake involved on the study of ac-
tion selection mechanisms, since action is an observer dependant category
in an agent-environment level of description, the attribution of actions to
selected mechanistic states becomes misleading. It is thus of fundamental
importance to define behaviour at the proper dynamical level. We can form-
alize the coupling between agent and environment (where behaviours are to
be described) as an autonomous dynamical system U composed by A and E
as follows

ẋU =

[

ẋA
ẋE

]

= U(xU ) =

[

A(xA;S(xE))
E(xE ;M(xA))

]

.

3.3 Autonomy

Be V ⊂ R
n the viability constraint space for xA. Then the agent A is

autonomous iff 2:

∀xA(t) ∈ V −→ φA(t+ dt;xA(t)) ∈ V (3.1)

To make this definition more explicit and applicable we shall intro-
duce Ashby’s notion of adaptive behaviour as maintenance of essential vari-
ables within physiological limits ([1], p.58). Consider the subset eA =
{e1
A
, e2
A
, . . . , ei

A
, . . . , em

A
} ∈ R

m ⊂ R
n where all ei

A
is a non-controlled es-

sential variable and often tend to decay through time (energy, temperature,

2Adapted from [43]
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etc.). We say that ei
A
is a non-controlled variable if the change on the agents

variables cannot directly (without the mediation of an environmental inter-
action) modulate ei

A
to keep it under viability range. The laws gouverning

some essential variables could be simplified to the form: ėi
A
= i(t)−k; where

k is a decay constant and i(t) an input from the environment where i(t) ∈ i
and i(t) = I(φE(t;x

0
E
)). I(φE(t;x

0
E
)), in this simplified form, is a function of

the environment determining the input to essential variables, e.g. position
and energy of food, temperature and position of a shadow, etc.

We shall then expand Beer’s definition of A’s laws above as ẋA =
A(xA; s(t), i(t)) where i(t) is the set of inputs to the set of non-controlled
essential variables.

When that is the case a system must interactively maintain its essential
variables under viability range. Lets take the example of body temperature.
When the body temperature approaches the viability boundary some or-
ganism can display sweating mechanism, which, under certain environmetal
conditions, directly decrease body temperature by hot dissipation through
the segregated sweat evaporation. This mechanism allows the system to dir-
ectly regulate body temperature to maintain it under viability range. But
it might be the case that external temperature is too high and sweating
is not sufficiently effective or that the system need to acquire more water.
Being under a shadow or acquiring water input from the environment is not
a directly controlled variable (as producing sweat). Formalized this makes
that for ėi

A
= i(t)− k :

eiA ∈ V ⇐⇒ V max
ei
A

< i(M(xA),xE)− k > V min
ei
A

(3.2)

where V min
ei
A

is the low boundary of ei
A
’s viability constraint and V max

ei
A

its

upper boundary.
If equation 3.2 is not satisfied ei

A
will decay until it gets outside Vei

A
. It is

then when the control of behaviour in terms of agent environment interaction
becomes an essential autonomous process to maintain the essential variables
under viability constraints and the system acquires its agency. We will
term, following Collier [15], this necessary interactions satisfaction of closure
criteria.

3.4 Adaptive Function

A function F (xU ) is an adaptive function for A iff: F (xU ) satisfies eA ∈ V .
Lets call the most abstract and general adaptive function F that satisfies
eA ∈ V : FeA(xU ). And the more specific adaptive function that satisfies
the maintenance of one or more essential variables under viability constraint
through a particular behaviour: feA(xU1, xU2, . . . , xUn).

To clarify this point lets imagine the scenario where an agent needs to
move to a lower temperature space to prevent the essential variable eT

A
>
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40oC, e.g. to cover itself under a shadow. In this case the environment is
completely passive (in any relevant sense to the performance of the function)
and the agent must actively change its relative position to an specific space
of the environment (shadowed area). In the given environmental conditions
the general adaptive function FeT

A

(xU ) to satisfy e
To

A
< 40oC can be specified

as:

feT
A

(xU ) =
dDa−s

dt
< 0 until Da−s = 0,

whereDa−s is the distance between the agent and the shadow. Note that the
distance between the agent and the shadow is not a controlled variable ∈ xA,
so that the function must be enacted by A through M(xA)

3. How does A
modulate xA by coupling S(xE) and M(xA) to perform FeT

A

(xU ) becomes
the object of study of the observer interested in the adaptive behaviour of A.
More generally we can abstract that Adaptive Behaviour, as a discipline, is
concerned with how A systems perform adaptive functions FeA(xU ). But we
must be careful at this point. What embodied and situated approaches have
shown is that (alike computational functionalist approaches will defend)
FeA(xU ) is not always performed by an “input – change of state – output”
sequence 4 but is enacted by a interactive process in which the agent exploits
multiple sensory-motor loops through its body-environment dynamics.

3.5 Embodiment and Situatedness

Embodied and situated approaches [8, 7, 13, 45] have highlighted the import-
ance of body and environment interactions from the situated perspective of
the cognitive/adaptive agent for cognitive/adaptive functionality. In our set
of definitions embodiment and situatedness are introduced by the functions
M(xA) and S(xE). Both sensory and motor functions represent the body as
constraining the interaction between the agent and the environment. S(xE)
makes the agent’s perception of its world situated in its relation with the
environment and not given from the point of view of an absolute observer
(dislike some GOFAI models where absolute relations: distance between
objects, properties of objects etc. are given to the agent).

The consequence of embodiment and situatedness is that at least some
(and probably most) adaptive functions are not instantiated by a decom-
posable structure r ⊂ xA that controlls the variables defining the specific

3An adaptive function could also be performed even if the agent is passive. A mother
could perform an adaptive function for her daughter by feeding her. In such a case
the component A(xA;S(xE)) of equation ?? remains passive and is E(xE ;M(xA)) that
performs the function. We could also imagine the case where the daughter cries to draw
the attention of her mother to be feed. In this case the adaptive function emerges from
the mother-daughter behavioural coupling. In general the higher the causal role of A is
on the realization of an adaptive function, the more autonomous A becomes.

4On which a given input specifies some “information” to the agent, which subsequently
changes its state and outcomes and “action”
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adaptive function but is interactively enacted by the coupling between A
and E . This coupling does not happen in the trivial sense that the agent
need an input to the essential variables to maintain them under viability con-
straints. Nor we are making the obvious claim that the agent must interact
in its world to achieve this. What embodiment and situatedness illustrates
is that the way the specific adaptive function is achieved involves a dynamic
coupling between agent and environment where no structure of the agent can
be pointed to be sufficient for the function to happen. We can contrast this
embodied and situated functionality, what Luc Steels has called emergent
functionality [38], as opposed to hierarchical systems. Hierarchical systems
are those where the system can be decomposed into different components
which perform isolated functions by directly controlling the variables de-
fining the function, i.e. the structure of the mechanism and the function
it performs are codefined. An example of a hierarchical system is a motor
engine where, for example, a valve that controls the flow of oil to an engine
performs it function by directly manipulating the size of the gap through
which the oil flows.

Bonabeau and Theraulaz [6] show how the manipulation of boundary
conditions5 not defining the function itself play a fundamental role in the per-
formance of that function. Given an environment E = {x1, x2, . . . , xn, . . . , xm}
and the subset of environmental variables defining a function En = {x1, x2, . . . , xn}
a function is defined as F (En) = dx1/dt, . . . , dxn/dt. An structure S per-
forms the function F iff: S(E) = F (En). What reductionists presuppose is
that {xn+1, . . . , xm} remains constant, i.e. δS/δxi = 0 for i = {n+1, . . . ,m}.
In short: reductionists believe that the external variables of those defining
a function do not affect how a structure performs that function. Embodi-
ment and situatedness shows how agents exploit many features of their body
and environment (boundary conditions) to perform functions which are not
defined by those body/environment features.

Clark [12, 13] has pointed out how the nature of what he calls interactive
emergence seriously compromises the classical computationalist definition of
function by:

• The dissolution of functional structures in highly interactive loops
between agent and environment.

• The dissolution of functional structures in distributed causal networks
5According to Bonabeau and Theraulaz [6] boundary conditions are those constrain-

ing lower-level processes to give rise to the “proper” emergent behavioural pattern. The
internal local rules of a system (the neural network in an agent) are generally unspecific
on their functionality. Extreme reductionism only considers internal explanations (lo-
gical/causal relationship defining functionality by means of their correspondance relation
with the environmental variables defining the function) of the performance of a function.
Alife synthetic computational methods, on the contrary, are better suited to study how
systems generate their own boundary conditions and perform functions interacting with
them.
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on the side of the agent’s behavioural mechanism (neural networks).

We believe that the incapacity of classical functionalist approaches to in-
tegrate the interactive and embodied nature of natural processes should not
invalid all kind of functional accounts. Alife techniques (such as genetic al-
gorithms [20]) and dynamical system theory can help us on the synthesis and
analysis of the interactive functional processes (as defined above) involved
in adaptive behaviour.

3.6 Value systems

In our notation a value system could be described as a set of variables of the
agent which change according to relevant input to essential variables. This
change of value system variables can be given by being directly influenced
by essential variables through internal sensors (e.g. satiation and hunger,
measuring the level of glucose in the blood) or evolved/associated to correl-
ate with environmental features which are relevant to the maintenance of
essential variables (such as taste of poisonous food, pain, etc.). But that
is not enough for a value system to be so, at the same time value system
states must be connected with (must modulate) directly or indirectly motor
functions; i.e must be integrated in the overall behaviour control architec-
ture. This way the agent can evaluate its interactions with the environment,
affecting the internal states and adjusting sensory-motor transformations in
relation to adaptively relevant experience. When the environment is chan-
ging or new situations are encountered, value systems help modulating ad-
aptive behaviour by evaluating the consequences of certain interactions and
accordingly restructuring internal dynamics.

Figure 3.1 shows the basic structure of a value system. By being directly
connected or correlated with input to essential variables the value system
can evaluate an interaction in terms of its satisfaction of closure criteria and
modulate neural dynamics accordingly.

A simplified formal definition of value systems can be given as: vA ⊂ xA
so that:

∃f1∧∃f2∧∃f3 −→ v̇A = f1(I(xE)) ∧ ∃x
i
A ∈ xA −→ ẋiA = f2(vA) ∧ M(f3(x))

But we want the value system to be relevant in the production of adaptive
function so we should add to the definition above:

∃feA ∧ ∃ eiA ∈ eA −→ feA(M(f3(x
i
A)),xE).

Putting both equations together we get that vA ⊂ xA is a value system iff:

∃f1 ∧ ∃f2 ∧ ∃f3 ∧ ∃feA ∧
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Figure 3.1: Agent and environment state variables and their interactions. Value system
(colored)is defined by its interaction between the nervous system and input to essential
variables. See text for more details.

∃ eiA ∈ eA ∧ ∃ xiA ∈ xA −→

v̇A = f1(I(xE)) ∧ ẋiA = f2(vA) ∧ feA(M(f3(x
i
A)),xE). (3.3)

In other words, for a value system to exist there must be at at least:

• a function (f1) of the input to essential variables that affects the value
system variables,

• a function (f2) of the value system variables that affects the control
architecture (which could be the value system variables themselves)
and

• a function (f3) of the control architecture variables (affected by the
value system variables) which produces a motor interaction

so that:

• the motor function and some environmental variables produce an ad-
aptive function (feA) for the agent: i.e. maintains the essential vari-
ables under viability constraints.

The reader can now localize the functions and variables involved in the
formal definition inside figure 3.1.
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Chapter 4

Simulation Design

To test the viability of the hypothesized mechanism (homeostatic-plasticity
based value system) and to illustrate the autonomous dynamical framework
formalized above we choose a minimally adaptive task. An agent (defined
as a set of dynamical laws gouverning a control architecture, a body and
a set of sensors) will have to maintain an essential variable (energy) under
viability constraints (above zero) in an environment composed of poisonous
and profitable food. Each of the food sources will provide a smell gradient
and a quality signal (taste). The aim of the simulation is to evolve the
parameters of the controll architecture in order to produce autonomous ad-
aptive behaviour in a changing environment where the quality of the food
varies between trials or during the trial. By evolving adaptive architectures
without predefined functional structures we will study how the internal dy-
namics of the agent and the agent-environment dynamical coupling gives rise
to adaptive behaviour. The task requires behavioural plasticity to satisfy
closure conditions in different environmental conditions providing a minimal
paradigm to study how internal structural variation produces autonomous
behaviour in changing environments.

This chapter provides a detailed exposition of the simulation design and
chapter 5 analyses the evolved mechanisms.

4.1 The environment

The agent’s environment consists of a two dimensional infinite plane with
two food sources (A and B) located between 20 and 27 su (space units) of
the agent’s initial position at an angle of ±( π

12
, 3π

12
) from the agent’s initial

position (see figure 4.1). Each food source is defined by a quality parameter,
a quantity parameter and size. The quality parameter defines the amount
of energy the agent loses or acquires when the agent enters into the radius
defined by the size of the food (2 space units – su). The quantity parameter
states how much food the source contains. When the quantity of food is
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Food B

Food A

Distance to food = (20,27)

Angle  =(π/12, 3π/12)

Figure 4.1: Environment of the simulation. Two food sources appear a variable distance
from the agent (between 20 and 27 su) at ±( π

12
,

3π

12
) degrees.

finished both food sources disapear and a new pair of food appears again at
variable distance between 20 and 27 su from the last food position and at a
±( π

12
, 3π

12
) angle from the last position’s center. When the new food sources

appear there is a 50% probability of swapping the angle of food sources so
that if food A was situated between an angle of + π

12
and +3π

12
is now located

between − π
12

and −3π
12

of the x axis.

4.2 The agent

Our agent is composed of an energy variable, an homeostatic plastic CTRNN
(Continuous Time Recurrent Neural Network), two motors connected to the
network and five sensors, as shown in figure 4.2, the diameter of the two
dimensional round body being of unit length one.

interneuronal plastic
connetions

neurones

food quality sensor

input and output
connetions

...

food A

sensory input

shadowed sensory input

food B

food B sensor
food A sensor

Figure 4.2: Simulated Minimally Autonomous Agent
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Energy Variable

The energy variable is initialized at 100 units and decays linearly by one
energy unit for time unit. When an agent enters the eating radius of a
food source the energy increases or decreases according to the quality of the
food (±5 energy units per time unit depending on the food being poisonous
or not). The agent has a satiation limit of 100 energy units, above which
the agent’s energy variable does not increase. The agent’s energy variable
represents the essential variable of the agent as an autonomous system.
It is a representation of the conditions of possibility of the agent’s self-
maintenance (closure) conditions which decays over time so that the agent
has to interact with the environment to maintain the essential variable under
viability constraints (bottom boundary at 0 energy units). The agent has
an energy cost function for loss of homeostasis of the neurons, given by the
equation:

∆E = −0.15 ·
n
∑

i=0

pi
n
∆t (4.1)

Where pi is the degree of local plastic facilitation (explained below in section
4.2 page 27).

Sensors

The food sensors are situated in the perimeter of the agent, separated by
120o as successfully tested by [31] for a similar task.

The input to the sensor is calculate according to the following equation:

I = e
−d2

D2 ; (4.2)

where d is the distance from the sensor to the source and D the maximum
initial distance of the agent from the source (27 su). The sensory input is
divided by 2 when the body shadows the source of light (as shown in fig-
ure 4.2). Sensors are connected to all the neurons of the controll architecture
and modulated by a fixed weight value for each neuron whose value (-5,5)
was subjected to evolution (see genetic encoding below); each neuron has
a gain value parameter (genetically determined) to modulate all the inputs
from sensors, value (-5,5).

A food quality sensor connecte to all the nodes is situated in the center
of the agent’s body. When the agent is at eating distance (2 su) from the
food source the sensor takes an input 1 if the food is non-poisonous and −1
if poisonous. Note that positive-negative value of the signal is, in principle,
neutral to the agent, it is given negative when the food is poisonous for
clarity to the observer but it could have been otherwise. The positive or
negative value of the signal is interpreted by the agents dynamics and does
not have any a priori value.

26



Motors and motion

Two neurons of the CTRNN are connected to right and left motors respect-
ively. The motor output is a linear mapping (-1,1) of the firing rate of the
neuron (a sigmoid function of its activation) multiplied by a gain (subject
to evolution) ranging (-2,2). The motion of the agent is calculated by a 0.2
timestep Euler approximation, the velocity being directly proportional to
the motor outputs.

Controll architecture: CTRNN

The agent’s behaviour is controlled by a continuous-time recurrent neural
network (or DRNN, Dynamic Recurrent Neural Network, generally used
in autonomous robotics and animats [2, 14, 31, 37]) gouverned by the the
following state equation :

τiẏi = −yi +
n
∑

j=1

(wijzj) + gi

5
∑

k=0

skiIk ;

where zj =
1

1 + exp(−(yj + bj))
(4.3)

where y is the state of each neuron, τ is the time constant, wij is the
connection weight between neuron i and j, zj is the activation of neuron j,
yj is j’s state and bj a bias term; gi is a gain (-5,5) applied to the overall
sensory input to the neuron, ski (-5,5) is the input weight from sensor k
to neuron i and Ik is the input value of sensor k. States where initialized
at 0 and the CTRNN was integrated using forward Euler method with an
integration step size of 0.2. All neurons are connected to each other and to
themselves; wij can take values from (−n, n), i.e. from minus the number
of neurons to the number of neurons. The bias term bj takes values from
(−n

2
, n

2
). Neurons activity decays according to the time constant τi values

between 1 and 2 or 4 (depending on the experiments, see section 5). Figure
4.3 (top right) shows the dynamic of a neuron with input 3 during the first
30 time units. The same input was give to a neuron in a 3 node network
during 70 time steps, the state space of the network is shown in figure 4.3.

Plasticity

Four plastic rules gouverning the weight change where implemented in the
CTRNN:

0: No plasticity: ∆wij = 0,

1: Plain Hebbian: ∆wij = δij ηij pj zi zj ,
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Action potentials of dynamic recurrent neural network
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Figure 4.3: Neural dynamics

2: Presynaptic Hebbian: ∆wij = δij ηij pj (zi − µij) zj ,

3: Postsynaptic Hebbian: ∆wij = δij ηij pj zi (zj − µij),

where pj is the degree of plastic local facilitation explained below, µij
depends linearly on the value of wij so that µij = 0 if wij = max and µij = 1
if wij = min, ηij is the genetically specified learning rate and δij is a linear
normalization value that constraints changes within allowed weight values
(−n, n).

Figure 4.4 shows the ∆wij for plain hebbian and presynaptic hebbian
rules. The effect of the postsynaptic rule can be easily figured out by in-
verting the x and y axis on the postsynaptic graph. The effect of the degree
of local facilitation parameter pi is not included in the graph, but the effect
of how the normalization parameter works can be observed: as the weight
increases (or decreases) the ∆w decreases as well.

Plastic changes are triggered when postsynaptic neurons lose their homeo-
stasis by determining the degree of local plastic facilitation pj mentioned
above. The relation between action potential, firing rate, and pj is shown in
figure 4.5. Note that the equation gouverning the degree of local facilitation
is the inverse of the one shown in figure 2.1 but by allowing the learning rate
ηij to have negative sign, evolution can find the appropriated homeostatic
arrangement.

The initialization of weights depends on the experiments.

Noise

Noise was added to motor output, sensory input and nodes. Noise to sensory
input and motor output was introduced by adding a noise factor (-0.25,0.25)
multiplied by a genetically determined parameter for sensory noise. Motor
output noise was implemented in the same way. Noise to activation values
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was implemented through the following equation: ∆yi = 0.25 ·yi ·ρ ·µ, where
ρ is a random value (-1,1) and µ is an evolved parameter (0, 1) controlling
activation noise.

4.3 Genetic encoding

The genotype is composed of a string of L double precision real numbers
(-1,1) for different parameters of the architecture and a string of n2 integers
[0,3] encoding a rule for each of the synaptic connections. Where L =
(n×k)+ (n×n)+ (2×n2)+5, being n the number of neurons (different for
both experiments) and k the number of inputs (5); 3 locus are for the noise
parameters (µ), 2 for the motor output gains, n2 for the learning rates of
the weights (ηij), n

2 for the initial weight values, n for the time constants τi,
n for the input gains (gi), n for the bias terms (bi), and n× k for the input
weights to the nodes (ski). The genotype-phenotype mapping is a linear
mapping between the value of the gene and the range of the parameter it
encodes (see subsections above for specifications).

4.4 Fitness Function

Agents where evaluated on 4 trials (2 for condition A and 2 for condition
B). Each trial is a lifetime of 800 tu (4000 ts) or 500 tu (depending on
experiments). The fitness is averaged over the 4 trials and is given by the
following equation:

Fitness =

∫ tmax

0

e(t)

e0
dt. (4.4)

where e(t) is the state of the agent’s energy variable at time t and e0 the
agent’s initial (and satiation) energy level.

The fitness function is meant to be a representation of the agent’s autonomy
in terms of its essential variable. This way selection acts upon the agents
autonomy and not on particular behaviour (as it is very often implemented
in evolutionary robotics, and specially conventional optimization).

4.5 Genetic Algorithm

A rank based Genetic Algorithm (GA) was used to evolve an adaptive ar-
chitecture. The population (see chapter 5 for details of each experiment)
was evaluated on four tests (two for condition A and two for condition B)
and ranked from fittest to less fit. The probability of being selected for
reproduction was calculated with the following equation:

P (i) =

(

i

Npop

)α

−
i−1
∑

n=1

P (n) ; (4.5)
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where α is the selective pressure (2), Npop the size of the population and
agents are ranked from i = 0 to i = Npop according to their fitness.

A roulette selection mechanism was used to select two parents to mate.
Point crossover with 50% probability for each locus was used to create
an offspring. A mutation probability of 0.1 per locus was applied to the
offspring; the mutation size being a Gaussian random variable with 0 mean
and variance (σ2) of 0.02 (a simplified version of mutation vectors proposed
in [2] and [37]).

Elitism was implemented by copying the four best genotypes to the next
generation without mutation nor crossover.
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Chapter 5

Experimental Results:

Multilevel Analysis of

Evolved Agents

After a series of experiments with the evolutionary scenario and the control
architecture explained in the last section two main types of agents were pro-
duced. In the first case network architectures where evolved which showed
a developmental process where early interaction with adaptively significant
events (encounters with food) shaped the weight space trajectories to pro-
duce robust adaptive strategies. This first type of results showed their lim-
itation on their sensitivity to initial interactions with the environment, once
the initial critical period was finished agent’s couldn’t readapt to change on
food quality.

The second type of results showed highly adaptive agents robust to an
indefinite number of food profitability changes. Nevertheless this agents
were reactive, in the sense that no long term variable state variation was
correlated with their behaviour. In particular synaptic plasticity didn’t seem
to play any significant role on the observed adaptive behaviour.

In this chapter we will analyse an agent from each of the evolved types de-
scribed above. Both analysis (experiments one and two below) focus on dif-
ferent aspects of the dynamical properties shown by the agents of each type.
Experimental results and operational tests will illustrate the autonomous
dynamical framework developed in the preceding chapters with special at-
tention to 1) value systems, 2) and homeostatic plasticity and 3) the concept
of adaptive function.

5.1 Experiment 1

In the first experiment we the agent was tested on 4 trials for 4000 ts where
the poisonous food source remained constant during the trial but changed
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Figure 5.1: Evolutionary dynamics for experiment 1. Dashed line top shows best fitness
and solid line average fitness of the population

between trials. Network consists of 10 nodes. Synaptic weights with plastic
rules (1,2,3) where initialized at zero and those with rule 0 (no plasticity)
where initialized with a genetically specified value. Agents where evolved
for 3000 generations. Figure 5.1 shows the evolutionary dynamics. The
phenotype of the evolved agent can be found in Appendix A.

5.1.1 Behavioural Analysis

Average behaviour over 10 trials

Our first behavioural test attempts to test the evolved agent’s adaptive
behaviour over 10 different trials. The agent is tested over 2500 ts (500 tu)
in two different conditions:

• Condition A: Food A begins being profitable and remains profitable.

• Condition B: Food B begins being profitable and remains so for the
rest of the trial.

Figure 5.2 shows agent’s food preferences over time; amount of food A
and B consumed over time (averaged for 100 ts and over 10 trials). It can
be seen that the agent adapts to both conditions. The peak of eaten A food
on condition B (left of figure 5.2), represent the first interaction with food,
where the agent always goes to food A, after that early interaction the agent
shows a distinctive ‘preference’ for food B.

Figure 5.3 shows the quantity of poisonous and non-poisonous food eaten
during the trial. The amount of poisonous food eaten is significantly reduced
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Figure 5.2: Mean eaten food thought time for a sample of 10 agents. The left figure
corresponds to condition A (food A profitable). Figure on the right shows agents food choice
for condition B. Values have been average for 100 ts over 10 trials for each condition.
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Figure 5.3: Mean eaten poisonous or non-poisonous food per time step for a sample
of 10 tests. The on the left shows data for condition A, and the figure on the right for
condition B

in comparison with the non-poisonous one and condition B shows a poorer
adaptive performance than condition A.

Single trial behaviour

We proceed by analysing single trial behaviour for both conditions. Figure
5.4 shows the agent’s trajectory on the two dimensional world (first and third
graphs starting from the top) and the distance to each food sources through
time. Behaviour in condition A shows a clear preference for food A. Condi-
tion B gives rise to not such a clear behaviour in the two dimensional world
but distance to food in the graph below illustrates the tendency towards
food B after an initial period of ‘confusion’, during the interval (0,1000).

The behaviour is clearly different in both conditions: there a clear tend-
ency to approach (and ’eat’) profitable food after and early stage of ‘ex-
ploration’, both in a single trial and in an averaged test of ten trial per
each condition. But how does this behaviour arise? The hypothesis is that
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Figure 5.4: Behaviour on a single trial for both conditions. First and third figures
starting from the top show the agent’s behaviour on the two dimensional world. The
second and fourth graphs show the distance from the agents position to the food sources
thought time.

homeostatic plasticity allows for a different configuration of the weights on
each condition which determines a particular dynamical coupling with the
environment that leads to the observed behaviour. The following section
will try to demonstrate the hypothesis, through a series of operational tests
and observations on the agent-environment dynamics with special attention
on the weight dynamics.

Long term stability test

When long term dynamics (in our case weight plasticity or long time con-
stants) are implemented in a simulation it is necessary to make a long term
stability test how robust over time is the behaviour produced by the evolved
parameters. The agent was tested 10 times for long term stability in a 25000
ts (time step) trial, 10 times longer than evolutionary tests. Results, in fig-
ure 5.5, show that after 15000 ts adaptive behaviour degenerates for both
conditions.
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Figure 5.5: Long term stability test for both conditions. The plots show average eaten
food per ts over 10 trials. Behaviour degenerates after t = 15000, i.e. after 6 times the
length of an evolutionary lifetime.

5.1.2 Dynamical Analysis: weight states determine adaptive

strategy after developmental process

Because the time constants are reduced to low values (1,4), we believe that a
change on the weight space trajectory is the responsible for the observed dif-
ferences on behaviour for both conditions. As a first approximation we will
initialize the weight values of the agent with the weight values developend
under condition A and test the agent on condition B.

Figure 5.6 illustrates the agent’s behaviour after the test is carried out.
The agent, whose weights have been developed under condition A, system-
atically goes to food A, although in the new condition food A is poisonous.
Unlike the agent’s behaviour in condition A, when food A is approached the
agent shows a repulsive behaviour but gets attracted to it afterwards, the
effect can be observed on the punctuated repulsion-attraction to food A (see
figure 5.6, the behaviour around the food, top graph, and the oscillation on
distance from food source on the bottom graph). The cycle is repeated until
the food is consumed and a new pair of food sources appears. The reaction
looks like an innate repulsive reaction in response to negative food quality
signal. A similar effect is observed when the agent is put on condition A
with the synaptic weight values developed on condition B: the agent system-
atically approaches food B and the attraction-repulsion dynamics can also
be observed.

We can conclude that the weight state determines the agent’s behaviour
and that a particular weight state is achieved during a developmental stage
on every condition, after which, the agent’s preference for food is fixed. We
shall now look more closely to the weight dynamics for both conditions.
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Figure 5.6: Synaptic weight values developed under condition A are tested on condition
B. The operational test shows that the agent’s behaviour is conditioned by its weight state.

Comparison of weight trajectories for both conditions

The first operation to discriminate a set of observable weight values (of
a total of 100 connections in the network) is to observe variation of weight
values through time on both conditions. From the variation analysis we plot
the weight trajectories for those weights showing a higher change between
the two conditions.

Figure 5.7 shows the trajectories of the synapses with highest variance
between the two conditions ( values correspond to the single trial behaviour
shown in figure 5.4). After a common trajectory during the first 300 ts the
trajectories diverge. The bifurcation point corresponds to the first encounter
with food A (see figure 5.4). After this first encounter the weight values take
different trajectories until they stabilize.

Figure 5.1.2 show the trajectories of the three synapses with higher vari-
ance. It can be noticed that different runs on both conditions produce a very
similar trajectories. The values of the shown weights being crucial for the
behavioural patterns observed. An operational test not allowing synaptic
plasticity on w9,0, w9,9 and w9,2 shows that they are crucial to give rise
to the behavioural patterns displayed under both conditions. By a further
test we discovered that not allowing plasticity on w9,0 completely disrupts
adaptive behaviour under condition B.
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Figure 5.7: Synaptic weight value trajectories for conditions A and B for the weights with
higher deviation between the conditions. After a common trajectory during the first 300
ts, the trajectories bifurcate significantly and stabilize. Weight trajectories for condition A
are plotted with solid lines and for condition B with dashed lines.

Weight space trejectories for both conditions

Condition A
Condition B

-10 -8 -6 -4 -2 0 2 4 6
weight(9,0) -10

-9
-8

-7
-6

-5
-4

-3
-2

-1
0

weight(9,9)

-3.5
-3

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

weight(9,2)
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Figure 5.9: Values of different state variables for the first 1000ts of a trial on condition
A. Starting from the top: firing rate of nodes 0 and 9, distance to food A and B, quality
signal, plasticity (amount of weight change in the network per time step), and loss of
homeostasis (summation of the local degree of plastic facilitation, for details see section
4.2, page 27)

Homeostatic Plasticity

We will now have a closer look at the early developmental stage where the
first encounters with food happens, in order to analyse the way in which
homeostatic plasticity and environmental interaction shapes the trajectory
of the weight space.

Figure 5.1.2 shows the activities of nodes 0 (right motor) and 9 (first
graph on top), distance to food (second graph), food quality signal (middle
graph), the amount of plasticity1 produced (next graph) and the loss of
homeostasis of the network (

∑n
i=0 pi), thought the first 1000 ts of a trial

in condition A. During the first 250ts a big amount of plastic change can
be observed, weight values (initialized at 0) are been developed thought
the early sensory-motor interactions. When the first food source (A) is
encountered (and in the following food encounters) large plastic changes
occur due to the food quality signal and the high food sensor activities
(not shown in the graph but correlated with distance). That the quality
signal is not the only responsible of plastic changes on food encounter can
be illustrated by the first approach to food source B (at t = 600) where the
plasticity graph shows a great peak although no quality signal is triggered
(i.e. the agent does not enter the ’eating’ radius of food source B).

1The amount of plasticity is calculated as
∑n

i=0

∑n

j=0
∆wij .
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Figure 5.11: Agent’s behaviour in the two dimensional world with disruption of food
quality signal to neuron 0 (right motor).

Further analysis of the relation between food encounters and plasticity
shows that the highest peaks on plasticity occur precisely when the first
adaptively significant events (encounters with food sources) occur as well as
on the first 300 ts. Figure 5.1.2 illustrates the claim.

5.1.3 Homeostatic Plasticity and Value System

A further analysis on different operations on the network variables showed
that the quality signal to neuron 0 (left motor neuron) is crucial for the
adequate developmental process of weight values. Disruption of the quality
signal to neuron 0 destroys adaptive behaviour in both conditions as shown
in figure 5.1.3.

According to our definition of value system (equation 3.3, page 23)
neuron 0 can be interpreted as a value system: its change of state when
adaptively significant interactions occur (specially when the first encounter
with food happens) produces a loss of homeostasis and a subsequent modu-
lation of weight trajectories leading to a particular adaptive function in the
given environmental conditions.

5.1.4 Conclusions from experiment 1

When early encounters with food happen, weight trajectories are affected
until stability is reached around the areas shown in figure 5.1.2. The food
quality signal to the left motor node makes the activity of the neuron go
out of homeostatic bounds thus allowing for w9,0 to take the characteristic
trajectories of conditions A or B. But after the initial encounters with food
the weight values stabilize and no further accumulation of adaptation is
possible.

The simulation of this first experiment showed how homeostatic plasti-
city can give rise to a value system: a developmental process sensitive to
adaptively significant events modulates different trajectories in the weight
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space which produce different adaptive behavioural patterns for different
environmental conditions. Evolved parameters for a homeostatic-plastic
CTRNN allow, at least, for a developmental value system to arise without
functional prespecification of a value system module or mechanisms.
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Figure 5.12: Evolutionary dynamics for experiment 2. Dashed line top shows best fitness
and solid line average fitness of the population

5.2 Experiment 2

In this second experiment size of the population was 40 and network size
8 nodes. Agents where tested over 4 trials (duration 4000 ts) where food
quality (poisonous, non-poisonous) was changed during the interval (1500,
3000). This time weights where initialized to genetically pre-specified values,
plastic changes where then applied during the trial to synaptic connections.
Figure 5.2 shows the evolutionary dynamics of experiment 2. The phenotipic
details of the evolved agent can be found in Appendix B (details will be given
when relevant to explanations).

5.2.1 Behavioural Analysis

Average behaviour over 10 trials

Our first behavioural test attempts to test the evolved agent’s adaptive
behaviour over 10 different trials. The agent is tested over 4000 time steps
(ts) in two different conditions:

• Condition A: Food A begins being profitable and changes to poison-
ous after t = 2000 and vice versa for Food B.

• Condition B: Food B begins being profitable and changes to poison-
ous after t = 2000 and vice versa for Food A.

Figure 5.13 shows agents average eaten food through time. Although
some poisonous food is always being eaten agents behaviour shows a robust
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Figure 5.13: Mean eaten food thought time for a sample of 10 agents. The right figure
corresponds to condition A (food A profitable). Left figure shows agents food choice for
condition B.
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Figure 5.14: Mean eaten poisonous or non-poisonous food for a sample of 10 tests. The
right figure shows data for condition A, and left figure for condition B

adaptive behaviour illustrated by the behavioural transition when poisonous
food in changed.

Figure 5.14 shows the quantity of poisonous and non-poisonous food
eaten during the trial averaged every 100 ts and over 10 trials. The amount
of poisonous food eaten is significantly reduced in comparison with the non-
poisonous one.

Single trial behaviour

We proceed by analysing single trial behaviour for both conditions (begin-
ning with food A being poisonous and beginning with food B being poison-
ous). Trial duration is reduced to 1600 ts and food is changed at t = 1000.
Figure 5.15 shows agent’s behaviour for both conditions.

Second and third graphs in figure 5.15 show distance between agent and
both food sources. Graphs show that the agent stays around the food when
profitable (non-poisonous) and withdraws from it when poisonous.

The agent approaches poisonous food even after having ‘eaten’ it before
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Figure 5.15: Behaviour of evolved agent. First two figures on top show agent’s behaviour
when Food A starts being profitable and changes to poisonous after t = 1500. The two last
figures show behaviour when Food B starts being profitable and changes after t = 1500.

(see punctuated approach to poisonous food in figure 5.15), which shows
that agent’s approach to food is not completely determined by food quality.
The agent does not ’eat’ only the non-poisonous food, it approaches both
foods but remains on the profitable one. When encountering poisonous food
withdraws from it and approaches the other source, 5.16 shows a close view
of this perspective. The oscillatory behaviour in 5.16, between t = 100 and
t = 160, shows how the agent repeatedly enters the ’eating’ ratio of the
food source when profitable and only enters the ‘eating’ radius once when
poisonous.

Autonomous Adaptation

That the agent is autonomous (satisfies closure criteria maintaining essential
variables under viability range) could be deduced from the behavioural tests
above. Nontheless we shall illustrate its internal energy variable to demon-
strate that the agent is, effectively, autonomous in the given environmental
conditions.

Figure 5.17 illustrates the trajectory of the essential variable Energy
and shows how the evolved agent is autonomous (according to equation
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Figure 5.16: Closer illustration of ’eating’ behaviour in condition A
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Figure 5.17: Essential variable energy for both conditions. The agent is autonomous
according to the definitiongiven in equation 3.1 in section 3

3.1 in section 3) under the given environmetal conditions. It is now time to
analyse how is its autonomy (eA > 0) realized through the observed adaptive
function:

fe =

{

dDa/dt < 0 until Da < 2 if a = profitable
dDb/dt < 0 until Db < 2 if b = profitable

(5.1)

where Da and Db are the distance between the agent and the A and B food
sources respectively.
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5.2.2 Dynamical Analysis

Weight Dynamics

Although the network had the possibility to exploit plasticity a comparative
analysis of the difference on weight dynamics for both conditions showed
little variation. The network was tested without plasticity and no significant
change occurred on fitness nor behaviour. We thus conclude that synaptic
plasticity didn’t play any role on the adaptive behaviour this agent. We will
thus ignore weight dynamics in what follows.

A close look to brain-body-environment dynamics

We proceed by having a closer look to the brain-body-environment dynam-
ics. Figure 5.22 shows the state of all the relevant dynamics of the brain-
body-environment coupled system for condition A, interval (0,300) ts. Nodes
6, 7 and 8 where omited because their activity remains near 0 for the whole
trial (an operational test forcing nodes 6,7 and 8 to zero showed no signific-
ant difference on behaviour).

The coupled dynamics show that significant neural dynamics can be di-
vided on two behavioural interactions: when the agent is near the profitable
food where fast oscillations can be observed — intervals (70, 160) and (260,
300) — and the rest. Note that no significant neural activity change hap-
pens when the agent encounters poisonous food at interval (200, 210) — the
peak on the right motor neuron at t = 220 is due to B food right sensor2.
We will thus proceed by analysing the dynamics on three different processes:
a) approaching behaviour, b) when the agent encounters profitable food and
c) when the agent encounter poisonous food.

Approaching Behaviour

To analyse the approaching behaviour we record agent’s behaviour during
the first hundred ts. Figure 5.19 shows how the right sensory input oscillates
producing a similar oscillation on both motor nodes and motor output. The
sensory oscillation is due to the agent’s body shadowing. As explained in
section 4.2 (page 26) if the body is between the food source and the sensors,
sensory input is divided by two. The effect is exploited by the agent’s nervous
system to enact the approaching behaviour. Figure 5.20 shows agent’s be-
haviour in the same environmental conditions but not implementing body
shadowing, the approaching behaviour is completely disrupted.

But how does the agent exploit its body shadowing to approach the food
source? A close look at the circuit composed of the two motor neurons and

2And operational test stopping quality sensory input when the agent approaches pois-
onous food shows that the behaviour does not change significantly. The question will be
addressed later on more detail.
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Figure 5.18: Agent’s behaviour with both food sources being poisonous

the food A sensors can give us some clue about what happens when only the
left sensor is shadowed. Figure 5.21 shows the connections of the isolated
circuit. By the values of the motor output (figure 5.19) we know that the
agent moves backwards, moving in relation to the food source by shadowing
only the left sensor or both. Looking to the simplified circuit (figure 5.21
left) we deduce that when only the left sensor is shadowed the input from the
right sensor to the right motor neuron inhibits its activity stronger than the
inhibitory connection between left sensor and left motor neuron. Because
the motor activities are negative (by the linear mapping from motor nodes
(0,1) to motor activity (-2,2)) this situation makes the agent move so that
both sensors are shadowed. When both sensors are shadowed the inhibitory
connections compensate each other. In this case dynamics of the whole
network must be considered, because the circuit shown in figure 5.21 will
produce the wrong movement.

Figure 5.21 shows an simplified version of the effect of sensor shadowing
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Figure 5.20: Agent’s behaviour not allowing body shadowing to sensors.

on the behaviour of the agent. The detailed analysis of the network show a
much more complex behaviour, but the significance of the sensor shadowing
has been shown. The approaching behaviour (a the main component of the
adaptive function specified in equation 5.1 —page 46) is not performed by
an internal representation of the food’s position and subsequent plan-action
sequence but is carried out by a complex interplay (active perception-action),
involving, at least, control of body shadowing.
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Figure 5.21: Agent’s approaching mechanism

Encounter with Profitable food

We move now to analyse the dynamics of the system when the agent en-
counters profitable food. Figure 5.22 shows the dynamics of sensors, motors
and neural activity when the agent encounters profitable food. The left mo-
tor node oscillates strongly between (0,1) producing oscillatory positive and
negative motor output which produces the agent to move forward and back-
ward. When the agent enters the eating radius of the profitable food, the
positive food quality signal triggers a complex repulsion-attraction dynamic
shown in figure 5.23.

At a first view it looks like the food quality signal to the network causes
the moving back of the agent. An operational test not allowing shadowing
didn’t produce the repulsion-attraction dynamic shown in figure 5.23. An-
other operational test forcing both (left and right sensor) shadowing showed
that the shadowing is required for the food quality signal to produce a re-
pulsive reaction. Figure 5.24 shows the agent’s behaviour on that test. It
can be observed that only the left motor is significantly excited by the food
quality signal which produces a twisting behaviour around the food. We can
conclude thus that both body shadowing of the food source sensory input
and the food quality signal interplay to produce the behaviour shown in
figure 5.23.

Encounter with non profitable food source

We have analysed the agent’s interaction with the environment on two dy-
namically distinguishable situations, where agent’s internal dynamics and
its interaction with the food source changed significantly: the approaching
strategy to food source A and the encounter with food A. Both situations are
adaptively significant but something else is required so achieve autonomy:
some kind of behavioural discrimination between poisonous and profitable
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Figure 5.22: Agent’s behaviour during encounter with profitable food

food. What happens when the agent encounter poisonous food? It looks,
a-priori, that this encounter should be dynamically significant since its effect
on the agents autonomy is of great importance. But figure 5.16 in section
5.2.2 (page 46) showed no significant perturbation on the neural dynamics
when the agent encounters poisonous food. How could this lead to adaptive
behaviour? What would happen if the agent’s environment only contained
poisonous food? Figure 5.25 shows agent’s behaviour when both foods are
poisonous (food quality signal for both food sources in -1). By not falling

51



7

8

9

10

11

12

15 16 17 18 19 20 21 22 23 24

Behaviour

Food A

Figure 5.23: Agent’s behaviour during encounter with profitable food but shadowing
disrupted

6

8

10

12

14

16

18

16 18 20 22 24 26 28

Behaviour with forced shadowing on both sensors

Food A

Figure 5.24: Agent’s behaviour with both food sources being poisonous

into the attraction-repulsion dynamics of profitable food shown in above, the
agent passes thought the food and gets attracted to the other food source.
The resulting behaviour is a quasi periodic cyclic attractor.

5.2.3 Emergent Adaptive Function and Value System

The adaptive function fe, described in equation 5.1 (page 46) cannot be
understood as state of the agent’s state space, not even as a series of states.
The function is distributed not only among the states of the agent but
among the agent-environment relationships. The agent exploits its sensory
boundary conditions (by going thought the poisonous food, for example)
and its body-environment interaction (by shadowing its sensors) to enact
an adaptive functionality that leads to autonomy. In fact how the adaptive
function is realized is by engaging in the cyclic quasi periodic attractor shown
in figure 5.25 until the agent finds a profitable food, where the food quality
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Figure 5.25: Agent’s behaviour with both food sources being poisonous

signal triggers an attraction-repulsion dynamic until the food is finished an
two new food sources appear. Is there any value system involved? The food
quality signal for profitable food has shown to be of major importance in
the agents adaptive functionality, in fact it can be considered to be a value
signal in its own right according to the definition 3.3:

• the food quality signal is correlated with a positive change in the es-
sential variable Energy,

• it produces a change in the network (specially in the left motor neuron),

• which produces an interactive pattern that gives rise to consuming the
food and

• breaking the quasi periodic cyclic behaviour around the two food, se-
lects the profitable one.

5.2.4 Conclusion for experiment 2

If autonomous adaptation is taken as the normative criteria no interpret
adaptive functionality and behaviour a detailed explanation of the agent’s
adaptive functionality. The simulation, as a simplified abstraction, allows for
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such interpretation in clear and dynamically analyzable ways and without
any prespecified functional lower level functional pre-specification.

5.3 Limitations and possible improvements

Homeostatic-plasticity in experiment 1 produced a stable adaptive behaviour
for a period of time 6 times longer that the evolutionary lifetime on which
the autonomous agent was evolved. But the mechanism showed a limited
robustness to longer periods of time. Internal homeostasis was probably
not sufficiently enforced, the energy cost of loss of homeostasis (a maximum
of 0.15 energy units per time unit) could be incremented. Different cost
parameters where tested during a set of experimental evolutionary runs and
finding an appropriate value was a difficult task, high cost values didn’t
allow any kind of evolution (agent’s remained stationary to avoid loss of
homeostasis) while lower values didn’t produce any significant homeostatic
behaviour of nodes.

Another severe limitation of the implemented plastic rules was that the
linear normalization parameter tended to push weight values to the max-
imum or minimum bounds. It was very rarely found that weight values oscil-
lated which made readaptation to change of food quality almost impossible.
More work on normalization of synaptic plasticity should be carried out.
At the same time a covariance hebbian rule and other kinds of plastic rules
could be used in future experiments.

The amount of evolutionary runs which produced agents where plasti-
city didn’t play any significant role and the highly adaptive functionality of
the agent in experiment two suggests that the ecological parameters could
be improved to force a selective behaviour where approaching both kinds
of food does not result evolutionarily advantageous. The difficulty of such
ecological valance was bigger than expected. If the ecological parameters
(distance to food, energy decay, food quality, etc.) constrained too much
the exploratory behaviour of the agents during evolutionary trials adapt-
ive behaviour couldn’t be evolved. If they didn’t constraint enough the
evolutionary pressure was too weak to improve purely reactive behaviour.
This difficulties point to the use of essential-variable based fitness function.
Despite the difficulties involved we believe that such implicit fitness func-
tions are important to for the study of adaptive behaviour (the question is
analyzed in more detail in the next chapter).

Homeostatic-plasticity showed some success to produce a value system.
A comparative analysis between the evolution of other value system mech-
anism (such as dopaminergic models) and the proposed one could should be
carried out.
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Chapter 6

Discussion

6.1 Autonomy, fitness function and evolutionary

simulations

Floreano and Urzelai [34] categorize fitness functions over a three dimen-
sional fitness space:

1. Functional-Behavioural: where the functional extreme evaluates
the causes of behaviour while the behavioural extreme evaluates the
effects of a behaviour.

2. External-Internal: where internal-external refers to the availability
for the agent of the variables defining the fitness function.

3. Explicit-Implicit: refers to the quantity of constraints imposed by
the fitness function over the agent’s behaviour.

Floreano and Urzelai defend a behavioural, internal and implicit fitness
functions as giving rise to autonomous self-organizing processes while the op-
posite extreme is more closer to conventional optimization. We believe that
the study of adaptive behaviour as an autonomous self-organizing process
(and not as optimization to environmental absolutes) will be significantly
enriched by essential variable based fitness functions.

Essential variable based fitness functions are easy to design but difficult
to implement because the ecological parameters in relation to the essen-
tial variables must be chosen very carefully. In our evolutionary simulation
food’s quality and quantity, distance to food, and energy decay constants
were carefully valanced so that autonomy (as maintenance of essential vari-
ables under viability range) did not become trivial nor too difficult to evolve.

If the aim of an evolutionary simulations is to study the relation between
mechanism and behaviour, for example the capacity of homeostatic plasti-
city to adapt to visual inversion [31] or the capacity of a CTRNN to integ-
rate reactive and learned behaviours [39], there is no necessity nor benefit
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on autonomy based fitness functions. But not all behaviours are adapt-
ive behaviour. If the scientific object of study is the emergence of adaptive
functionality and its relations to mechanisms, essential variable based fitness
functions provide the means for:

1. Evolving adaptive behaviour without prespecified adaptive strategies.

2. Allowing for the internalized normativity of closure conditions

3. Allowing for a codefinition of niche (relevant environmental features
to achieve closure conditions) and adaptive behaviour

The contrast between autonomy based and more explicit fitness functions
will become more evident in more complex simulated environments. Explicit
fitness functions, by selecting for particular behaviours, could miss an im-
portant feature of adaptation in complex environments. With a rich set of
environmental opportunities to satisfy closure conditions the selective pres-
sure will push the evolving systems to redefine their autonomy through novel
interactions with their environments. The complex process of codefinition
between an organism and its ecological niche (as the set of environmental
variables contributing to its adaptive functionality) could be lost if explicit
fitness functions are used. We believe that as evolutionary modeling tech-
niques develop the use of autonomy based fitness functions will become more
and more significant to the study of the evolution and nature of adaptive
behaviour as defined by Ashby.

6.2 Computational and evolutionary functionalism

revisited

Computational functionalism (Block [5]), as a theory of what cognition
is about, has conceptualized Cognitive Science and established a research
paradigm based on a set of assumptions. The main idea is that a men-
tal state can be defined by its causal role in the whole system, which can
be specified in a look-up table of states and input-output correspondences.
Cognition, for functionalist theories, is about the “right” computation (state
transition rules) of representational states, the content of those states being
the relation between them and “states of affairs” in the world. The defin-
ition of function in terms of input-output relations and its independency
from the mechanisms involved introduces an hermeneutic (interpretative)
problem when having to fix what counts as the input-output relationship
that specifies a function; and, in cognitive terms what counts as the rep-
resentation ‘in the mind’ and the entity (or “state of affairs” in the world)
it represents. William Clancey [11] has conceptualized the problem under
the label ‘the frame of reference problem’ as a lack of clarity on differentiat-
ing between: “a robots designer’s ontological preconceptions, the dynamics
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of a robot’s interaction with an environment, and an observer’s descriptive
theories of patterns in the robot’s behavior” (p.107). In most functionalist
accounts the observer’s descriptive theories and design preconceptions have
been taken to be an explanation of the causes driving the cognitive agent’s
behaviour avoiding references to the robot’s dynamic interactions.

On the other hand evolutionary functionalism (Millikan [28, 27]) claims
to provide a naturalized and normative account of functionality. It is a
naturalized account because having a function is not dependant on a given
interpretation by an observer but on the ‘natural’ (selectionist) history of the
system itself. And it is normative because it gives an account of what is the
proper function of trait or structure even if the structure does not perform
the function. Normativity introduces a solution to hermeneutic adequacy
(mentioned above) because, although an indefinite number of functional
interpretations can be made of any behaviour, evolutionary history provides
the “right” one.

But a number of problems remains unsolved in both evolutionary and
computational functionalism:

Functionalism or evolutionary history does no catch the causally

effective mechanisms that produce cognitive behavior

Maturana and Varela’s [24, 25, 26] structural determinism thesis criticises
computational/representational functionalism as a rather misleading meta-
phor which doesn’t appeal to any causally present mechanism/organization
to explain cognition. They consider functional/representational descriptions
to be semantic projections of an observer which pertain to the linguistic con-
sensual domain of the observer rather than to the cognitive system under
study. If fact, any claim about internal representational states is completely
undetermined. As Verschure et al. put it [46]: “Any stimulus response re-
lationship can be described by multiple functional models and a selection
between these alternative models cannot be made by sole reference to the
observed response” (p.247-8). Bickhard, Christensen and Hooker [16, 9, 10]
have developed a similar critique to evolutionary functionalism. Millikan’s
recursion to history to ground functional normativity make functions to
be ontologically separable form the system in which they are performed,
functional explanations stand in the history of the mechanism and not the
present causal mechanisms. Functions then become epiphenomena [9] since
adaptive systems do not have access to their evolutionary history. The ques-
tion, then, becomes how to ground functionality and normativity to be onto-
logically tied to the system it belongs to while still maintaining a normative
hermeneutic (interpretative) criteria to justify functional explanations.
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No dynamical nor interactive factors are considered in the pro-

duction of adaptive behaviour

Formally, functionally, equivalent systems can be absolutely non equivalent
in real life where time and energy can be essential for adaptation, and cog-
nition [17]. Real organisms must survive in dynamical environments, in real
time, coping with very complex interactions which might not be explicitly
‘represented’ in behavioural mechanisms. This critique was strongly defen-
ded by Brooks approach to situated robotics [8, 7], where the attention is
focused on non-representational sensory-motor transformations without any
sens-plan-action architecture. Both internal (structural and organizational)
and interactive dynamics are essential to explain cognitive behaviour and
neither computational nor evolutionary functionalism integrate dynamical
explanations in the picture.

Our simulation experiments showed that lower level specifications bearing
dynamical resemblance with biological mechanisms, do not allow for an in-
terpretation of internal states representing, in any computationally relevant
way, states of affairs in the world. We showed that no such functional
decomposition is possible when agents are designed and analysed as dy-
namical systems whose functionality emerges from the internal and agent-
environment dynamic interactions. The case of approaching a food source
(section 5.2.2, page 47) is a good example where body (shadowing) and
sensorimotor dynamics give rise to an active-perception loop where no com-
putational decomposition of perception-plan-action structure can be local-
ised. But a dynamical approach to adaptive behaviour does not rule out the
notion of normative function, we have illustrated how normative function
could be grounded in dynamical interactive nature of autonomous systems
by evaluating and interpreting adaptive behaviour as maintenance of essen-
tial variables under viability constraints. Even more, we showed that value
systems can act as internal normative mechanisms. In particular the first
experiment showed an agent whose homeostatic plasticity, through envir-
onmental interactions, selected between different weight trajectories giving
rise to different dynamical couplings with its environment depending on the
food quality conditions. The internalized normativity of the value system
comes form the effect it has on the agents autonomy, i.e. on its essential
variable (energy) that represents the condition of possibility of the system.

Apart from the problems exposed above evolutionary functionalism can-
not explain functional novelty. Di Paolo [31] evolved an agent able to adapt
to visual inversion and other sensorimotor disruptions. Under evolutionary
functionalism the agent’s re-adaptation cannot be considered to be func-
tional because the agent was never selected for adaptation to visual inversion.
This is a great deficit of evolutionary functionalism. If simulated autonom-
ous agents are able to evaluate their interactions with the environment they
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might show new adaptive strategies when faced with environmental condi-
tions never encountered during their evolutionary histories, in such cases we
will still require a normative and naturalized account of functionality to eval-
uate and interpret adaptive behaviour. The notion of adaptive functionality
based on autonomy can provide such account.

6.3 Towards a definition of biological cognition

If representational functionalism is rejected to characterize cognition and a
dynamical perspective is embrace.. how do we characterize cognition in dy-
namical terms? Which are the necessary and sufficient dynamical conditions
for cognition? On one hand van Gelder’s dynamical hypothesis bypasses the
problem by claiming that: “This paper simply takes an intuitive grasp of
the issue for granted. Crudely put, the question here in not what makes
something cognitive, but how cognitive agents work” ([41], p.619). On the
other hand theoretical biologists such as Maturana and Varela [25, 26], take
the very act of living as a cognitive activity. “A cognitive system is a sys-
tem whose organization defines a domain of interactions in which it can act
with relevance to the maintenance of itself, and the process of cognition is
the actual (inductive) acting or behaving in this domain.” ([25], p.13). An
autopoietic system creates its own phenomenological world (different from
the environment) and its autopoietic activity in that domain is the very
essence of cognition. In more recent articles Varela has constrained a use of
the term cognitive self as specified in the behavioural domain (as a subdo-
main of the general autopoietic domain) and to the operational closure of
the nervous system: “The operational closure of the nervous system then
brings forth a specific mode of coherence, which is embedded in the organ-
ism. This coherence is a cognitive self: a unit of perception/motion in space,
sensory-motor invariances mediated through the interneuron network. The
passage to cognition happens at the level of a behavioural entity, and not,
as in the basic cellular self, as a spatially bounded entity.” ([42], p.10). Fol-
lowing a very similar perspective Beer [3] equates cognition with adaptive
behaviour. But the problem remains that of distinguishing from coordinate
walking, optimal foraging, and mathematical reasoning in purely dynam-
ical terms. Cognition is a subset of adaptive behaviour but it is difficult to
specify how the boundaries of this subset should be distinguished without
reference to representations. A step forward in this direction has been made
by Christensen and Hooker [16, 10]. Their notion of self-directedness al-
lows for a gradual classification of adaptive behaviour from less to more
cognitive on the basis of three criteria: a) capacity to adaptive the effect
of environmental interactions, b) reduction of local-context dependency and
d) modulation of interaction over larger timescales.

The difference between the first and second types of agents evolved in
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our simulation illustrates two different positions under this criteria. Ex-
periment two (page 43) analysed an agent whose adaptive behaviour was
based on very closely coupled environmental interaction where no discrim-
ination between profitable and non profitable food occurred until the agent
encountered a food source. The first experiment, on the contrary, showed an
agent where the effect of early interactions on weight trajectories allowed for
a discrimination between poisonous and profitable food decoupled from con-
tinuous interactive engagement with both food sources. The study of value
systems controlling long term internal dynamics seems to us an important
object of study for a gradual understanding of the mechanism involved in
biological cognition.
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Chapter 7

Conclusion

By modeling lower level neural mechanisms with no prespecified functional
structures we produced autonomous agents that showed adaptive behaviour
under changing environments. The analysis of the evolved agents and their
interactive dynamics showed that computational functionalist approaches
fail to give and adequate account of the dynamical nature of adaptive beha-
viour. We showed how adaptive functionality emerges from a complex inter-
play between internal dynamics and body-environment interactions. At the
same time value systems where found to be essential components on the pro-
duction of adaptive behaviour. In particular homeostatic plasticity proved
to be able to generate a developmental value system capable of modulating
weight space trajectories giving rise to different behavioural patterns under
different environmental conditions. By defining adaptive function as homeo-
static maintenance of essential variables under viability constraint through
environmental interactions, normative function can be reconceptualize un-
der the notion of autonomy. This way we can solve the frame of reference
problem while avoiding recursion evolutionary history to define adaptive
functionality.

If we are to take the continuity between life and mind seriously (Wheeler
[47]) an autonomous dynamical framework seems to be the natural way to
study how cognition arises through the increasing complexity of adaptive
strategies. But the scientific understanding of a naturalized and dynamical
characterization of cognition is still in need of a workable theoretical found-
ation and methodological tools. We hope to have contributed something in
this direction.
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Appendix A

Phenotype Agent

Experiment 1

================================ NEURON PARAMETERS =====================================

Phe/Neu Neu[0] Neu[1] Neu[2] Neu[3] Neu[4] Neu[5] Neu[6] Neu[7] Neu[8] Neu[9]

Bias +0.91 -0.60 -3.32 +2.30 -1.17 -3.66 -0.71 +0.08 -2.63 -2.78

Timec +2.08 +3.77 +3.02 +3.74 +1.31 +2.66 +2.74 +2.97 +2.78 +3.93

Gains -3.99 +3.96 +2.94 -3.32 +4.80 -0.52 +0.13 +3.60 +0.83 -1.93

========================================================================================

============================== INPUT WEIGHTS ===========================================

Sen/Neu Neu[0] Neu[1] Neu[2] Neu[3] Neu[4] Neu[5] Neu[6] Neu[7] Neu[8] Neu[9]

Sens[0] -3.35 -2.69 -4.83 +3.67 +0.24 -4.98 -1.27 +0.45 -2.85 -1.02

Sens[1] -4.98 -1.27 +0.45 -2.85 -1.02 +4.19 -3.53 +2.18 -2.78 +0.24

Sens[2] +4.19 -3.53 +2.18 -2.78 +0.24 -2.95 -3.55 -3.02 +0.78 -4.62

Sens[3] -2.95 -3.55 -3.02 +0.78 -4.62 +2.29 -2.10 +2.36 +3.82 -1.47

Sens[4] +2.29 -2.10 +2.36 +3.82 -1.47 +0.16 +3.50 +1.44 -2.91 +4.41

========================================================================================

================================== OUTPUT ==============================================

Right Motor = 1.969 Left Motor = 1.969

========================================================================================

========================================================================================

NOISE: Input= 0.022375, Output= -0.040201, Activation=-0.019814

========================================================================================
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==================================== DRNN ==============================================

rules

learn Neu[0] Neu[1] Neu[2] Neu[3] Neu[4] Neu[5] Neu[6] Neu[7] Neu[8] Neu[9]

iweig

1 3 3 3 3 1 1 0 1 1

Neu[0] -0.82 -0.77 -0.52 -0.29 -0.90 +0.49 +0.05 -0.48 -0.71 -0.03

-2.45 -9.20 -5.44 +5.92 +4.24 +0.93 -5.19 -9.78 +0.86 +7.89

2 3 2 2 2 1 1 0 1 0

Neu[1] -0.61 +0.44 -0.06 -0.46 -0.44 +0.98 -0.02 -0.05 -0.07 +0.36

-4.28 +1.98 +7.63 +5.26 -0.53 +9.45 -3.33 -7.98 -4.72 -3.77

2 3 3 0 0 1 3 1 3 3

Neu[2] -0.71 +0.84 -0.63 +0.02 +0.61 +0.63 +0.39 +0.78 -0.88 +0.87

+1.12 -7.00 -3.14 -2.15 +8.74 -9.78 -4.30 +8.10 -6.78 -4.36

2 2 2 3 2 3 3 2 2 3

Neu[3] -0.05 -0.50 +0.45 -0.65 -0.68 +0.03 -0.30 +0.50 -0.26 +0.61

-0.70 -4.21 +8.24 +4.10 -0.98 +4.69 -5.78 -9.85 +1.51 +3.07

0 3 0 1 2 2 0 2 2 3

Neu[4] -0.11 +0.15 -0.47 -0.45 -0.22 -0.79 -0.04 +0.85 -0.68 +0.82

+8.62 -1.52 -0.60 +2.59 -4.53 -4.21 -0.75 +7.52 +2.60 +9.94

2 2 2 3 3 0 3 3 3 3

Neu[5] -0.07 -0.26 -0.95 +0.40 -0.07 +0.41 -0.80 -0.46 +0.06 +0.40

+5.97 +7.45 -4.00 -2.87 -6.03 +1.18 -6.56 +7.44 -6.43 +0.83

3 1 0 2 2 3 3 3 0 0

Neu[6] -0.72 +0.55 +0.09 +0.74 -0.13 +0.88 +0.63 +0.01 +0.51 -0.05

+4.70 +4.00 -5.09 -2.24 +1.12 +6.39 -5.56 -1.49 -6.64 +2.17

3 2 1 3 1 1 0 2 1 0

Neu[7] +0.84 -0.60 +0.04 -0.46 -0.75 -0.59 -0.55 -0.57 -0.89 +0.97

-1.80 -9.31 -2.93 +1.00 +5.03 +4.29 -9.72 +6.59 +5.08 -1.09

0 3 3 2 0 0 3 2 1 1

Neu[8] -0.31 -0.82 -0.13 +0.79 +0.86 -0.08 +0.77 -0.30 -0.82 -0.26

-6.42 -8.04 +5.69 +9.94 -9.78 -9.11 +6.22 -7.95 -3.08 +4.58

2 2 1 2 1 2 0 2 1 2

Neu[9] +0.86 +0.08 -1.00 +0.06 -0.74 +0.01 +0.48 -0.55 +0.16 -0.91

+3.45 +1.33 +5.24 +8.20 -5.67 -0.96 -4.47 +8.37 +6.49 -3.08

=======================================================================================
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Appendix B

Phenotype Agent

Experiment 2

================================ NEURON PARAMETERS =====================================

Phe/Neu Neu[0] Neu[1] Neu[2] Neu[3] Neu[4] Neu[5] Neu[6] Neu[7] Neu[8] Neu[9]

Bias +2.98 -1.49 +2.27 -0.23 -0.28 -2.20 +0.37 -3.74

Timec +1.08 +1.00 +1.24 +1.13 +2.00 +2.36 +2.99 +1.05

Gains +2.02 +4.88 +4.73 -3.23 +3.69 -0.20 -0.57 -3.89

========================================================================================

============================== INPUT WEIGHTS ===========================================

Sen/Neu Neu[0] Neu[1] Neu[2] Neu[3] Neu[4] Neu[5] Neu[6] Neu[7] Neu[8] Neu[9]

Sens[0] +2.66 +0.73 -3.43 +1.97 +1.38 -3.38 +1.89 +0.76

Sens[1] -3.38 +1.89 +0.76 -2.46 +1.12 +2.65 -3.26 -2.99

Sens[2] +2.65 -3.26 -2.99 -1.56 -1.27 -4.71 +2.74 +1.69

Sens[3] -4.71 +2.74 +1.69 -1.91 +0.33 +2.57 -3.29 +3.69

Sens[4] +2.57 -3.29 +3.69 -1.42 -3.91 -4.77 -0.86 -0.92

========================================================================================

================================== OUTPUT ==============================================

Right Motor = 1.911 Left Motor = 1.911

========================================================================================

========================================================================================

NOISE: Input= -0.006422, Output= -0.029760, Activation=0.102917

========================================================================================
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==================================== DRNN ==============================================

rules

learn Neu[0] Neu[1] Neu[2] Neu[3] Neu[4] Neu[5] Neu[6] Neu[7] Neu[8] Neu[9]

iweig

3 1 1 3 0 2 2 0

Neu[0] -0.85 +0.61 +0.90 -0.66 -0.19 +0.50 -0.76 +0.86

-6.82 +4.32 +6.55 -4.93 +7.37 -7.01 +0.25 -0.21

3 3 2 2 0 0 0 1

Neu[1] +0.08 -0.85 -0.95 +0.91 +0.33 +0.97 -0.76 -0.94

+3.33 -0.80 -4.38 +4.22 -3.18 +1.56 +3.12 -1.02

0 2 2 2 0 2 0 2

Neu[2] +0.69 +0.17 -0.87 +0.63 +0.87 +0.96 +0.60 +0.85

-1.11 -1.68 -6.92 +4.23 +4.85 -1.11 +0.43 +1.63

1 1 0 2 0 1 0 3

Neu[3] -0.04 -0.71 -0.74 -0.79 +0.12 +0.31 +0.37 +0.24

+5.41 -6.01 -6.71 -4.65 +0.98 -7.25 -6.57 -7.12

2 1 0 0 3 2 2 3

Neu[4] +0.65 +0.80 -0.89 -0.51 -0.65 +0.25 +0.43 -0.63

-6.21 +6.32 +4.68 +0.69 -2.29 +7.36 -0.81 -4.65

3 1 2 1 3 2 3 1

Neu[5] +0.13 -0.56 +0.01 -0.10 +0.24 -0.71 +0.80 +0.66

-2.29 +6.92 +1.63 +1.80 -6.74 -2.90 -5.46 +1.42

3 1 2 0 3 2 3 2

Neu[6] +0.73 -0.62 +0.78 -0.35 -0.17 +0.59 +0.51 -0.77

-6.44 +3.43 +3.61 -1.14 -1.17 +2.91 -7.67 +1.81

1 1 1 0 0 2 0 3

Neu[7] +0.85 +0.94 +0.50 +0.46 +0.78 +0.33 +0.14 -0.51

-0.77 +3.47 +6.60 +2.92 +6.55 -1.74 +0.71 -1.30

=======================================================================================
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This document has been done using LATEX2ε . All the work contained in
this dissertation has been produced using free-software (under GPL license
or similar) under Debian GNU/Linux.

6th April 2004

Finally, a set may be created by the fiat of a theoretician who,
not knowing which state a particular machine is at, wants to
trace out the consequences of all the possibilities. The set now is
not the set of what does exist, but the set of what may exist (so
far as the theoretician is concerned). This method is typically
cybernetic, for it considers the actual in relation to the wider set
of the possible or the conceivable.
W. ROSS ASHBY1

1Ashby, R.W. (1957) An introduction to cybernetics. Chapman & Hall, London, 1956.
p.136. of the online version (1999): http://pcp.vub.ac.be/books/IntroCyb.pdf
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